語系/ Language:
繁體中文
English
KMU OLIS
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Modeling count data
~
Hilbe, Joseph M., (1944-)
Modeling count data
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Modeling count data/ Joseph M. Hilbe.
作者:
Hilbe, Joseph M.,
出版者:
Cambridge :Cambridge University Press, : 2014.,
面頁冊數:
xv, 283 p. :ill., digital ; : 24 cm.;
提要註:
This entry-level text offers clear and concise guidelines on how to select, construct, interpret, and evaluate count data. Written for researchers with little or no background in advanced statistics, the book presents treatments of all major models using numerous tables, insets, and detailed modeling suggestions. It begins by demonstrating the fundamentals of modeling count data, including a thorough presentation of the Poisson model. It then works up to an analysis of the problem of overdispersion and of the negative binomial model, and finally to the many variations that can be made to the base count models. Examples in Stata, R, and SAS code enable readers to adapt models for their own purposes, making the text an ideal resource for researchers working in health, ecology, econometrics, transportation, and other fields.
標題:
Linear models (Statistics) -
電子資源:
https://doi.org/10.1017/CBO9781139236065
ISBN:
9781139236065
Modeling count data
Hilbe, Joseph M.,1944-
Modeling count data
[electronic resource] /Joseph M. Hilbe. - Cambridge :Cambridge University Press,2014. - xv, 283 p. :ill., digital ;24 cm.
Machine generated contents note: Preface; 1. Varieties of count data; 2. Poisson regression; 3. Testing overdispersion; 4. Assessment of fit; 5. Negative binomial regression; 6. Poisson inverse Gaussian regression; 7. Problems with zeros; 8. Modeling under-dispersed count data - generalized Poisson; 9. Complex data: more advanced models; Appendix A: SAS code; References; Index.
This entry-level text offers clear and concise guidelines on how to select, construct, interpret, and evaluate count data. Written for researchers with little or no background in advanced statistics, the book presents treatments of all major models using numerous tables, insets, and detailed modeling suggestions. It begins by demonstrating the fundamentals of modeling count data, including a thorough presentation of the Poisson model. It then works up to an analysis of the problem of overdispersion and of the negative binomial model, and finally to the many variations that can be made to the base count models. Examples in Stata, R, and SAS code enable readers to adapt models for their own purposes, making the text an ideal resource for researchers working in health, ecology, econometrics, transportation, and other fields.
ISBN: 9781139236065Subjects--Topical Terms:
236283
Linear models (Statistics)
LC Class. No.: QA278 / .H56 2014
Dewey Class. No.: 519.535
Modeling count data
LDR
:01977nam a2200265 a 4500
001
314023
003
UkCbUP
005
20181005153155.0
006
m d
007
cr nn 008maaau
008
181106s2014 enk s 0 eng d
020
$a
9781139236065
$q
(electronic bk.)
020
$a
9781107028333
$q
(hardback)
020
$a
9781107611252
$q
(paperback)
035
$a
CR9781139236065
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA278
$b
.H56 2014
082
0 4
$a
519.535
$2
23
090
$a
QA278
$b
.H641 2014
100
1
$a
Hilbe, Joseph M.,
$d
1944-
$3
432062
245
1 0
$a
Modeling count data
$h
[electronic resource] /
$c
Joseph M. Hilbe.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2014.
300
$a
xv, 283 p. :
$b
ill., digital ;
$c
24 cm.
505
8
$a
Machine generated contents note: Preface; 1. Varieties of count data; 2. Poisson regression; 3. Testing overdispersion; 4. Assessment of fit; 5. Negative binomial regression; 6. Poisson inverse Gaussian regression; 7. Problems with zeros; 8. Modeling under-dispersed count data - generalized Poisson; 9. Complex data: more advanced models; Appendix A: SAS code; References; Index.
520
$a
This entry-level text offers clear and concise guidelines on how to select, construct, interpret, and evaluate count data. Written for researchers with little or no background in advanced statistics, the book presents treatments of all major models using numerous tables, insets, and detailed modeling suggestions. It begins by demonstrating the fundamentals of modeling count data, including a thorough presentation of the Poisson model. It then works up to an analysis of the problem of overdispersion and of the negative binomial model, and finally to the many variations that can be made to the base count models. Examples in Stata, R, and SAS code enable readers to adapt models for their own purposes, making the text an ideal resource for researchers working in health, ecology, econometrics, transportation, and other fields.
650
0
$2
96060
$a
Linear models (Statistics)
$3
236283
650
0
$2
96060
$a
Statistics.
$3
219456
650
0
$2
96060
$a
Multivariate analysis.
$3
231740
856
4 0
$u
https://doi.org/10.1017/CBO9781139236065
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得,請勿在此評論區張貼涉及人身攻擊、情緒謾罵、或內容涉及非法的不當言論,館方有權利刪除任何違反評論規則之發言,情節嚴重者一律停權,以維護所有讀者的自由言論空間。
Export
取書館別
處理中
...
變更密碼
登入